2 research outputs found

    Continual learning from stationary and non-stationary data

    Get PDF
    Continual learning aims at developing models that are capable of working on constantly evolving problems over a long-time horizon. In such environments, we can distinguish three essential aspects of training and maintaining machine learning models - incorporating new knowledge, retaining it and reacting to changes. Each of them poses its own challenges, constituting a compound problem with multiple goals. Remembering previously incorporated concepts is the main property of a model that is required when dealing with stationary distributions. In non-stationary environments, models should be capable of selectively forgetting outdated decision boundaries and adapting to new concepts. Finally, a significant difficulty can be found in combining these two abilities within a single learning algorithm, since, in such scenarios, we have to balance remembering and forgetting instead of focusing only on one aspect. The presented dissertation addressed these problems in an exploratory way. Its main goal was to grasp the continual learning paradigm as a whole, analyze its different branches and tackle identified issues covering various aspects of learning from sequentially incoming data. By doing so, this work not only filled several gaps in the current continual learning research but also emphasized the complexity and diversity of challenges existing in this domain. Comprehensive experiments conducted for all of the presented contributions have demonstrated their effectiveness and substantiated the validity of the stated claims

    Class-Incremental Mixture of Gaussians for Deep Continual Learning

    Full text link
    Continual learning models for stationary data focus on learning and retaining concepts coming to them in a sequential manner. In the most generic class-incremental environment, we have to be ready to deal with classes coming one by one, without any higher-level grouping. This requirement invalidates many previously proposed methods and forces researchers to look for more flexible alternative approaches. In this work, we follow the idea of centroid-driven methods and propose end-to-end incorporation of the mixture of Gaussians model into the continual learning framework. By employing the gradient-based approach and designing losses capable of learning discriminative features while avoiding degenerate solutions, we successfully combine the mixture model with a deep feature extractor allowing for joint optimization and adjustments in the latent space. Additionally, we show that our model can effectively learn in memory-free scenarios with fixed extractors. In the conducted experiments, we empirically demonstrate the effectiveness of the proposed solutions and exhibit the competitiveness of our model when compared with state-of-the-art continual learning baselines evaluated in the context of image classification problems
    corecore